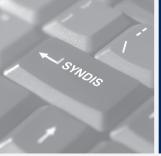


SO-54SR-111-REK-1.4

Контроллер (АПВ) THO-RC27 с функциями автоматики безопасности


Контроллер SO-54SR-111-REK-1.4 с функциями автоматики защиты предназначен для эксплуатации автоматических выключателей АПВ THO-RC27 производства ZPUE S.A., работающих в интеллектуальных электрических сетях типа SMART GRID, особенно при выполнении функций телеметрии и автоматики, обусловленных функциональностью FDIR.

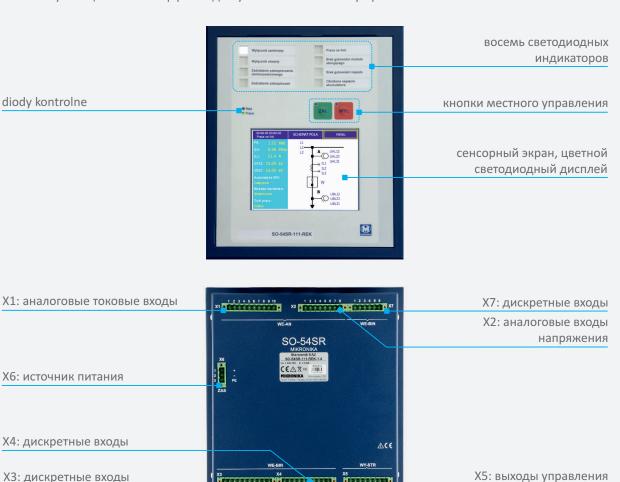
Контроллер смонтирован в шкафах управления SRC-1 реклоузеров THO-RC27, пригодных для установки на любом типе энергетического столба.

Контроллер объединяет следующие функции: измерение, защита, автоматизация, управление, телемеханика и многоканальный регистратор неис-правностей и событий. Он оснащен блоками защиты, такими как: токовые, замыкание на землю, напря-жения, частоты и функциями автоматизации, такими как: SPZ, PDZ, B2H.

Расширенные коммуникационные ресурсы позволяют работать в сетях Ethernet, GPRS/UMTS/LTE-APN, TETRA с использованием внешнего терминала и передавать радиосигналы в выделенных и открытых каналах в стандартных протоколах связи.

Для обеспечения защиты и конфиденциальности данных в контроллере внедрены механизмы кибербезопасности в соответствии со стандартом PN-EN 62351.

Конструкция


Контроллер выполнен в специальном панельном корпусе. Он устойчив к атмосферным условиям. Он оснащен панелью оператора, состоящей из графической панели с сенсорным ЖК-экраном, дополнительного модуля из 8 сигнальных светодиодов, 2 контрольных светодиодов (ошибка, работа) и кнопок ON/OFF.

Источник питания контроллера гальванически отделен от коммуникационных интерфейсов и логических схем, что гарантирует высокую эксплуатационную надежность, устойчивость к повреждениям, вызванным перенапряжениями, и нечувствительность передачи к помехам.

Контроллер оснащен 20 гальванически разделенными двоичными входами и 4 гальванически разделенными двоичными выходами, а также 3 аналоговыми входами для измерения тока от катушек Роговского и 6 входами для измерения напряжения с помощью емкостных делителей. Все входы и выходы расположены на задней панели устройства.

Контроллер имеет коммуникационные ресурсы, состоящие из канала Ethernet 100Base-TX, двух интерфейсов RS-232, двух интерфейсов RS-485, интерфейса 1-Wire и служебного интерфейса RS-232.

Все коммуникационные интерфейсы доступны с нижней части устройства.

Конфигурация и диагностика

Контроллер конфигурируется и диагностируется локально и удаленно с помощью специальной программы конфигурации и диагностики pConfig. Диагностика контроллера также возможна через WWW-интерфейс, SMS-сообщения и протоколы телемеханики. Доступ к контроллеру возможен через Ethernet или сети GPRS/UMTS/LTE-APN.

Телемеханика и функции автоматизации безопасности

Контроллер выполняет необходимые функции телемеханики, защиты и автоматики в сетях с различными режимами работы нейтральной точки, т.е.: компенсированной с автоматикой AWSC, с нейтральной точкой, заземленной через резистор или с изолированной нейтральной точкой.

Состояния всех входов, значения измерений, срабатывания модулей защиты и автоматики передаются по событиям и могут циклически считываться системой контроля SCADA. Контроллер имеет четыре банка уставок защиты, что значительно облегчает эксплуатацию, особенно в условиях, когда необходимо изменение конфигурации электросети.

Обнаружение короткого замыкания основано на измерениях:

- трехфазные токи от катушек Роговского рассчитывается ток 3I
- три напряжения с помощью делителей реактивности напряжение ЗU₀ определяется из этих измерений В контроллере имеются следующие модули защиты и функции автоматизации:

VANIE

Nº	символ	НАЗВАНИЕ	код ANSI
1	11>>	независимая защита от перегрузки по току	50
2	12>>	независимая защита от перегрузки по току	50
3	13>	независимая защита от перегрузки по току	50
4	14>	независимая защита от перегрузки по току	50
5	15>	независимая защита от перегрузки по току	51
6	IS>	защита от асимметрии тока	46/46BC
7	U<<	защита от пониженного напряжения	27
8	U<	защита от пониженного напряжения	27
9	U>	защита от перенапряжения	59
10	U _o >	защита от перенапряжения	59N
11	I ₀ >	защита от сверхтоков замыкания на землю	50N
12	l ₀ >>	защита от сверхтоков замыкания на землю	50N
13	I _{ok} >	направленная защита от сверхтоков замыкания на землю	67N
14	G _o >	защита проводимости	-
15	B _o >	защита от восприимчивости	-
16	Y _o >	защита от пропусков	-
17	f<	субчастотная защита	81U
18	f>	защита от перегрузки по частоте	810
19	df/dt	защита от скорости изменения частоты	81
Nº	АББРЕВАЦИЯ	НАЗВАНИЕ	
1	SPZ	автоматический перезапуск	
2	PDZ	ускорение защиты от короткого замыкания	
3	B2H	блокировка от намагничивающего тока на основе 2-й гармоники	

Регистратор событий

Это журнал, доступный через программу конфигурации pConfig и в системе диспетчеризации SCADA. В журнал записываются все события, связанные с куриру емым объектом. Метка времени, передаваемая с разрешением 1 мс, позволяет анализировать действия, выполняемые как при нормальной работе, включая включение и выключение, изменение банков настроек, изменение конфигурации и т.д., так и в аварийных ситуациях.

Регистратор помех

Контроллер оснащен многоканальным регистратором помех, который позволяет регистрировать осциллограммы измеренных и вычисленных аналоговых величин, двоичные состояния, представляющие входы и выходы, а также внутренние состояния самого контроллера.

Регистратор помех контроллера может срабатывать при отключении или приведении в действие каждого из блоков защиты, а также при включении выключателя.

Аналоговые осциллограммы помех и двоичные сигналы сохраняются в энергонезависимой памяти в стандарте COMTRADE и доступны как локально, так и дистанционно через инженерную связь.

Кибербезопасность

Решения по кибербезопасности, применяемые в контроллере, основаны на рекомендациях ENISA, NIST, BDEW, BlueCrypt. Реализация механизмов безопасности соответствует PN-EN 62351, IEEE P1686, PN-ISO/IEC 27001, BDEW White Paper "Requirement for Secure Control and Telecommunication Systems". Эти механизмы включают:

- защиту коммуникаций
- контроль доступа
- защита конфиденциальных данных
- регистрация/мониторинг действий пользователей

Отдельные функциональные возможности настраиваются с помощью программы конфигурации и диагностики pConfig.

Связь с системами SCADA

Контроллер может работать в локальных или глобальных сетях GPRS/UMTS/LTE-APN и/или ETHERNET. Для связи с системами SCADA стандартно используются протоколы DNP 3.0 или PN-EN 60870-5-104. Возможно использование и других протоколов связи, например, PN-EN 60870-5-101, PN-EN 60870-5-103, Modbus-RTU, Modbus-TCP. По желанию контроллер может работать как конвертер этих протоколов. Устройство также приспособлено для работы с системой TETRA. Внешний радиотерминал системы TETRA может быть подключен к контроллеру через последовательный интерфейс.

Основные технические данные

Электропитание

ПАРАМЕТР	НОРМА	ЗНАЧЕНИЕ УГРОЗЫ	УРОВЕНЬ ТЕСТА	КРИТЕРИЙ
источник питания	PN-EN 60870-2-1	24B	-20/+20%	DCx
средняя потребляемая мощность	-	15Вт	-	-

Входы и выходы

тип	количество	НАПРЯЖЕНИЕ ТОК	ПРИМЕЧАНИЯ	
дискретные входы	20	24B 3mA		
дискретные выходы	4	24B 0,5A		
аналоговые входы напряжения	6	-	ёмкостной делитель (конденсатор 20÷31пФ)	
аналоговые токовые входы	3	-	катушка Роговского 1 мВ/1А	

Электромагнитная совместимость (ЭМС)

Контроллер с точки зрения выбросов и устойчивости к ЭМС соответствует требованиям для типичной электрической среды класса В согласно PN-EN60255-26:2014P. Устройство также соответствует стандартам PN-EN 61000-6-2 в отношении устойчивости к электромагнитной совместимости в промышленных условиях и PN-EN 61000-6-4 в отношении выбросов.

/F/SQ54\$R111REK14/RU/1021/1.0